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Abstract

In this study, the Lorentz transformations which are in accordant with special relativity have
been examined for the first time with elliptic biquaternions. Since the elliptic biquaternions
contain the complex structure, it is beneficial to examine the Lorentz transformations which
can be the building blocks of relativistic physics via elliptic biquaternions. Therefore, as a result
of relativistic transformation relation, it has been seen that the Lorentz transformations can
be expressed with elliptic biquaternions and some special results have been given. In addition,
matrix representations of obtained mathematical expressions are given. Thanks to the matrix
representations of elliptical biquaternions, the property of commutativeness which is not valid
for elliptic biquaternions has been eliminated and these representations provide a convenience
for relativistic transformation relation. In this context, the presented method in this article is
very useful.
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1 Introduction

Quaternions were discovered in 1843 during the studies of Irish mathematician William Rowan
Hamilton while extending the complex numbers into three-dimensional space. From that day for-
ward, the quaternions were used in physics by E. Schrödinger, W. Heisenberg, P. A. M. Dirac, M.
Born and many other famous physicists between 1927 and 1932 in parallel with the developments
of quantum mechanics. Real quaternions have applications in many fields such as differential ge-
ometry, motion geometry, quantum mechanics and real quaternions sentence can be represented
as

H = {Q = a0 + a1i+ a2j + a3k : a0, a1, a2, a3 ∈ R}

where the quaternion unit bases 1, i, j and k satisfies the multiplication laws as follows:

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

[1]. Also, the quaternionic units i, j, k are taken as base vectors of the 3− dimensional vector space,
so that a quaternion Q can be written as a linear combination of a scalar and a spatial vector [2]. In
1853 W. R. Hamilton defined the sentence biquaternions (complex quaternions). The quaternionic
units i, j, k are the same with the units in the real quaternions, this sentence is defined by

HC = {Q = W +Xi+ Y j + Zk : W,X, Y, Z ∈ C}

[3]. Complex quaternions have many applications in mathematics and physics. The applications of
complex quaternions in physics have been mostly in the field of general and special relativity, rela-
tivistic mechanics, electromagnetism and quantum mechanics [4-9]. One of these is the expression
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of the particle mechanical equations, the conservation of 4-momentum formulas and the equations
of electromagnetism by means of complex quaternions [10]. It is seen that many researchers have
searched out the studies using the formulation of complex quaternions on Lorentz transformations
and Maxwell equations [11-15]. Afterwards, it is seen that the complex quaternion algebra and the
whole 2× 2 complex matrix algebra are isomorphic to each other. This isomorphism is defined as

ψ : HC →M2(C) , ψ(a0 + a1i+ a2j + a3k) =

[
a0 + a1i −a2 − a3i
a2 − a3i a0 − a1i

]
[16-19]. By means of this isomorphism, many researchers have done studies. For instance, the matrix
expressions of Lorentz transformations with complex quaternions studied by S. Demir [20]. On the
other hand, the isomorphism for the 2x2 elliptical matrix representation of elliptical biquaternions
is defined by Özen et al. [21] as follows:

σ : HCp →M2(Cp),Q = A0 +A1i+A2j +A3k → σ (Q) =

 A0 + 1√
|p|
IA1 −A2 − 1√

|p|
IA3

A2 − 1√
|p|
IA3 A0 − 1√

|p|
IA1

 (1.1)

where Q and R are any elliptic biquaternions, the function σ is a linear isomorphism bijection
and surjection which provides properties σ(Q + R) = σ(Q) + σ(R) σ(QR) = σ(Q)σ(R). HCp
and M2(Cp) denote the set of elliptic biquaternions and the set of elliptic matrices of type 2 ×
2 respectively. In this study, we investigate Lorentz transformations with elliptic biquaternions
through the isomorphism described above. We define special matrices with elliptic biquaternions
that we obtained under this isomorphism and using these special matrices we give the 4× 4 elliptic
and 8 × 8 type real matrices. Also, by means of matrix representations corresponding to the left
Hamiltonian operator, the problem of the non-commutative property of the elliptic biquaternions in
the algebraic structure has disappeared. Then we expressed the elliptic biquaternion R that relates
space and time with equation 4.1. In Theorem 4.1, we give the elliptical matrix representation of
this expression. In this way, the space and time components of the elliptic biquaternion R′ obtained
as a result of the relativistic transformation relation can be easily seen. In this expression, the real
component of the elliptic biquaternion R′ = ct+ Ir denotes time and its the imaginer component
denotes space. Note here that the imaginer component I =

√
|p| denotes the space. Moreover, by

taking I2 = p = −1 since I2 = p < 0, we also showed that elliptic biquaternions include complex
cases.

2 Complex numbers and elliptic biquaternions

2.1 p−Complex numbers

The pairs (x, y) whose elements are real numbers are called complex numbers. The first persons to
benefit from complex numbers are G. Cardan and R. Bombelli. On the other hand, the generalized
complex numbers are separable to three as ordinary, dual and double complex numbers. The
complex numbers defined as i2 = −1 in case of imaginary unit i. It is the case the imaginary unit i
the natural complex numbers are i2 = −1. The English geometrician W. Clifford developed double
complex numbers for the case of i2 = 1. The German geometrician E. Study then carried out the
studies on kinematics and line geometry, introducing different theorems and in the case of i2 = 0
the dual numbers are obtained. I. Yaglom expressed that the ordinary, dual and double numbers
are special members of the two-parameter family of the complex number system and he defined
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generalized complex numbers as

z = x+ iy (x, y ∈ R) , i2 = iq + p (q, p ∈ R)

[22]. Harkin et al. have expressed that the generalized complex numbers are isomorphic to other
number systems under consideration i2 = p and q = 0 in i2 = iq + p. Then p−complex numbers
system Cp is defined as

Cp =
{
x+ iy : x, y ∈ R, i2 = p

}
.

Also, p− trigonometric functions are defined as

cospθp =

 cos (θp
√
|p|) , p < 0

1 , p = 0
cosh(θp

√
p) , p > 0

(2.1)

and

sinpθp =


1√
|p|
sin (θp

√
|p|) , p < 0

1 , p = 0
1√
psin(θp

√
p) , p > 0

(2.2)

[23]. Also Harkin expressed in his this geometric study that generalized complex numbers and
rotations can be applied to the theory of special relativity in physics. In another studies on p−
complex numbers, the generalized Steiner formula and the Holditch theorem were presented by
T. Eris.ir and M. A. Güngör [24]-[25]. The exponential function for eϕp an elliptic number ϕp =
x + Iy ∈ Cp in the set of elliptic numbers Cp is known as a p− analytic function defined in the
form of eϕp = ex+Iy = exeIy = ex(cospy + Isinpy). From here, the p− trigonometric functions can
be obtained as follows:

cospy = eIy+e−Iy

2 , sinpy = eIy−e−Iy
2I for x = 0

cosp(Iy) = epy+e−py

2 = cosh(py) for y = Iy

sinp(Iy) = epy−e−py
2I = I

p sinh(py) for y = Iy

(2.3)

On the other hand, for the elliptic complex variable p− cosine and p− sine functions also provide
the identity cosp

2ϕp + |p| sinp2ϕp = 1 where ϕp = x+ Iy ∈ Cp [26].

2.2 Elliptic biquaternions
The set of elliptic biquaternions is given in the cartesian form as follows:

HCp =
{
Q = q+ Iq′ = A0e0 +A1e1 +A2e2 +A3e3 : A0, A1, A2, A3 ∈ Cp, I2 = p < 0

}
where the numbers Ai = qi+Iq

′
i , 0 6 i 6 3 state elliptic numbers. The unit bases of a biquaternion

provide the product rule given in Table 1 [1]. Let Q = A0e0+A1e1+A2e2+A3e3 ∈ HCp be an elliptic
biquaternion providing the product rule in Table 1, then Q is defined as pure elliptic biquaternions
provided that A0 = 0 [27].

Any elliptic biquaternion P is expressed with the scalar (B0) and vectorial components (B1e1 +
B2e2 +B3e3) in the following form

P = S(P) + V (P) = B0 + P (2.4)
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Table 1. Multiplication scheme of the quaternionic units.
× e0 e1 e2 e3
e0 e0 e1 e2 e3
e1 e1 −e0 e3 −e2
e2 e2 −e3 - e0 e1
e3 e3 e2 -e1 - e0

The sum and quaternionic product of any two elliptic biquaternions Q = A0e0+A1e1+A2e2+A3e3
and P = B0e0 +B1e1 +B2e2 +B3e3 are defined as

P + Q = (B0e0 +B1e1 +B2e2 +B3e3) + (A0e0 +A1e1 +A2e2 +A3e3)

P + Q = (B0 +A0) + (B1 +A1)e1 + (B2 +A2)e2 + (B3 +A3)e3
PQ = (B0e0 +B1e1 +B2e2 +B3e3)(A0e0 +A1e1 +A2e2 +A3e3)
PQ = (B0A0 −B1A1 −B2A2 −B3A3) + (B1A0 +B0A1 +B3A2 −B2A3)e1

+(B2A0 −B3A1 +B0A2 +B1A3)e2 + (B3A0 +B2A1 −B1A2 +B0A3)e3 .

In other words, the quaternionic product of two elliptic biquaternions can also be given, in the form
of

PQ = (B0 + B)(A0 + A) = B0A0 +B0A +A0B − 〈B,A〉+ B ∧A (2.5)

where 〈, 〉 and ∧ indicate inner product and vector product in three-dimensional space. The ellip-
tic biquaternion Q = A0e0 + A1e1 + A2e2 + A3e3 = S(Q) + V (Q) = q + Iq′ has three different
conjugates given as follows:

Q̄ = A0e0 −A1e1 −A2e2 −A3e3 = S (Q)− V (Q)(quaternionic conjugate)
Q∗ = (A0)∗e0 + (A1)∗e1 + (A2)∗e2 + (A3)∗e3

= (S(Q))∗ + (V (Q))∗ = q− Iq′(complex conjugate)
Q† =

(
Q̄
)∗

= (Q∗) = (A0)∗e0 − (A1)∗e1 − (A2)∗e2 − (A3)∗e3
= (S (Q))

∗ − (V (Q))
∗

= q̄− Iq̄′ (total conjugate)

where q̄ and q̄′ indicate the biquaternionic conjugates of real quaternions q and q′ respectively. On
the other hand, the inner product of these elliptic biquaternions is defined in the following way:

〈P,Q〉Q =
1

2
(P̄Q + Q̄P) =

1

2
(PQ̄ + QP̄)

where the symbol 〈〉Q indicates a quaternionic inner product. Using this inner product semi-norm
of Q is expressed as follows:

N(Q) = 〈Q,Q〉Q = QQ̄ = Q̄Q = A0
2 +A1

2 +A2
2 +A3

2

Also, since Ai = qi + Iq′i ∈ Cp (0 6 i 6 3) are in the above equation, it is seen that N(Q) can be
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equal to zero while Q 6= 0. Accordingly, in the algebra of the elliptic biquaternions HCp, there are
some elliptic biquaternions Q that satisfy the equality QQ̄ even if Q 6= 0 and the algebra of the
elliptic biquaternions HCp contains zero divisors. Therefore, semi-norm is used instead of the norm
in the elliptic biquaternion space HCp in order to be appropriateness to the general literature [26].
Provided the semi-norm of the elliptic biquaternion Q is different from zero then it’s inverse is given

by Q−1 = Q̄
N(Q) . Also, the module of this elliptic biquaternion Q is defined as

N(Q) = QQ̄ = Q̄Q = |Q|2

and indicated by |Q|. In the case of

N(Q) = 〈Q,Q〉Q = QQ̄ = Q̄Q = A0
2 +A1

2 +A2
2 +A3

2 = 1 (2.6)

is satisfied, then the elliptic biquaternion Q is called unit elliptic biquaternions [26]. The set of all
unit elliptic biquaternions is given by
η = {Q ∈ HCp : N (Q) = 1} and the set of all pure elliptic biquaternions whose semi-norm is equal
to the absolute value of p such as

ζ =
{
w = A1e1 +A2e2 +A3e3 : N(w) = A1

2 +A2
2 +A3

2 = |p| , w∗ = −w,w2 = p
}
.

Thus, for any elliptic biquaternion Q whose modulus never vanishes, this elliptic biquaternion
satisfies the following equalities [26]

R =
(√

A0
2 +A1

2 +A2
2 +A3

2
)
Cp
, cospϕp =

A0

R
, sinpϕp =

(√
A1

2 +A2
2 +A3

2
)
Cp√

|p|R
. (2.7)

Accordingly, the following theorem can be given.

Theorem 2.1. Let w ∈ ζ be a pure elliptic biquaternion and ϕp ∈ Cp be an elliptical complex
angle. In this case, the elliptic biquaternion can be written as cospϕp + wsinpϕp is a unit elliptic
biquaternion [26].

Theorem 2.2. Let Q = A0 + A1e1 + A2e2 + A3e3 be the elliptic biquaternion whose modulus is
non-zero. In this case, a pure elliptic biquaternion is derived from the vectorial part of such that

wQ =
√
|p| A1e1 +A2e2 +A3e3(√

A1
2 +A2

2 +A3
2
)
Cp

(2.8)

is an element of the set ζ, i.e., (wQ)
2

= p [26].

The elliptic biquaternion Q = A0 + A1i + A2j + A3k in p− trigonometric form depending on
Theorem (2.1) and Theorem (2.2) can be written as

Q = R(cospϕp + wQsinpϕp). (2.9)

Here the angle ϕp ∈ Cp is an elliptic complex angle in the form of ϕp = x+ Iy [26].

Theorem 2.3. If an elliptic biquaternion is given as Q = cosh(p
θp
2 ) + 1

I q̂ sinh(p
θp
2 ) then Q is a

unit elliptic biquaternion
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Proof. For a given velocity vector ~v = v1e1 + v2e2 + v3e3 and pure unit elliptic biquaternion
q̂ =

√
|p|v1e1+v2e2+v3e3√

<−→v ,−→v >
, Q = cosh(py) + 1

I q̂ sinh(py) can be written as unit elliptic biquaternion.

By means of the equalities 2.3, 2.8 and 2.9 the conjugate of the elliptic biquaternion is taken as
Q̄ = cosh(py)− 1

I q̂ sinh(py). Here, if we give y =
θp
2 , we can obtain as

QQ̄ = N(Q) = cosh2(p
θp
2

)− sinh2(p
θp
2

) = 1.

q.e.d.

3 Matrix representations of elliptic biquaternions

In terms of more descriptive mathematical expressions, it is also the preferred method to give this
mathematical expressions matrix representations. In this section, we study with matrices. It is
possible to represent an elliptic biquaternion Q with 4× 4 matrices. These matrices that similar to
Pauli spin matrices can be defined with the help of isomorphism expressed in 1.1 as follows:

σ (e0) = σ0 =

[
1 0
0 1

]
, σ (e1) = σ1 =

 I√
|p|

0

0 − I√
|p|


σ (e2) = σ2 =

[
0 −1
1 0

]
, σ (e3) = σ3 =

 0 − I√
|p|

− I√
|p|

0

 . (3.1)

These matrices satisfy the properties of

(σ(e0))2 = 1, (σ(e1))2 = (σ(e2))2 = (σ(e3))2 = −I2.

In addition with the help of these special matrices, we define the matrices corresponding to the
base elements e0, e1, e2, e3 in the real quaternions as follows:

Γ0 =

[
σ0 0
0 σ0

]
2×2

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,Γ1 =

[
σ2 0
0 −σ2

]
=


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


Γ2 =

[
0 −σ0
σ0 0

]
=


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 ,Γ3 =

[
0 σ2
σ2 0

]
=


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 .
(3.2)

These matrices satisfy the multiplication relations for basis of elliptic biquaternion as

Γ0
2 = Γ0 = I4, Γ1

2 = Γ2
2 = Γ3

2 = −I4, ΓjΓk = δjkΓ0 − εjklΓl (3.3)

where the expressions δ and ε denote Kronecker Delta and Levi-Civita symbols, respectively. Thus
for an elliptic biquaternion Q ∼= A0Γ0 + A1Γ1 + A2Γ2 + A3Γ3 by using quaternionic bases in 3.2
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the known left Hamiltonian matrix can be given by

H−(Q) =


A0 −A1 −A2 −A3

A1 A0 A3 −A2

A2 −A3 A0 A1

A3 A2 −A1 A0

 (3.4)

On the other hand, the known right Hamiltonian matrix is as follows:

H+(Q) =


A0 −A1 −A2 −A3

A1 A0 −A3 +A2

A2 +A3 A0 −A1

A3 −A2 +A1 A0

.
The number of elliptic biquaternions Q here is also; it is also possible to represent with the matrix

4× 1 given by Q = [A0,A]
T

=
[

A0 A1 A2 A3

]T
.

The following theorem can be given for Hamiltonian matrices.

Theorem 3.1. Let two elliptic biquaternions be Q = A0Γ0 + A1Γ1 + A2Γ2 + A3Γ3 and P =
B0Γ0 +B1Γ1 +B2Γ2 +B3Γ3 in algebra HCp. Accordingly, the following properties are provided:

Q = R⇔ H+(Q) = H+(R)⇔ H−(Q) = H−(R)

1. H+(Q + R) = H+(Q) + H+(R), H−(Q + R) = H−(Q) + H−(R)

2. H+(λQ) = λH+(Q), H−(λQ) = λH−(Q)

3. H+(QR) = H+(Q)H+(R), H−(QR) = H−(R)H−(Q)

4. H+(Q̄) = [H+(Q)]T , H−(Q̄) = [H−(Q)]T

5. H+(Q∗) = H+(Q), H−(Q∗) = H−(Q)

6. H+(Q†) = [H+(Q)]∗, H−(Q†) = [H−(Q)]∗

where is an elliptical number [27].

On the other hand, by using the above properties it is possible to define the elliptic biquaternion
multiplication given in equation 2.5 as follows:

H−(P)Q =


B0 −B1 −B2 −B3

B1 B0 B3 −B2

B2 −B3 B0 B1

B3 B2 −B1 B0




A0

A1

A2

A3

. (3.5)

Now, let we the following antisymmetric matrices are define follow as:

P̃ =

 0 B3 −B2

−B3 0 B1

B2 −B1 0

 (3.6)



132 Z. Derin, M. A. Güngör

and

Q̃ =

 0 A3 −A2

−A3 0 A1

A2 −A1 0

. (3.7)

In this case with the help of the defined matrix in 3.6 the expression 3.5 can be given as follows:

PQ ∼=
[
B0 −B
BT B0I3 + P̃

] [
A0

A

]
. (3.8)

Similarly using the right Hamiltonian matrix representation of multiplication the equality can be
written as follows:

H+(Q)P =


A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0




B0

B1

B2

B3

. (3.9)

On the other hand, considering the elliptic biquaternionic matrix given in 3.7, this multiplication
matrix can be expressed as an elliptic matrix of size 2x2

PQ =

[
A0 −B

BT A0I3 − Q̃

][
B0

B

]
(3.10)

As is known, the product of two elliptic biquaternions has no commutative property. Therefore we
define two elliptic biquaternions as follows:

^

P =

[
B0 −B
BT B0I3 + P̃

]
(3.11)

and
^

Q =

[
A0 −A
AT A0I3 − Q̃

]
(3.12)

H−(P)Q ∼=
^

PQ

and

H+(Q)P ∼=
^

QP.

Hence, we can write the following equality

H−(P)Q = H+(Q)P

and
^

PQ =
^

QP. (3.13)

Thus, the commutative property which is not valid for elliptic biquaternions can be easily obtained
with the help of matrices. This equality will provide convenience for matrix representations of the
relativistic transformation relation. It is also possible to express the elliptic biquaternion Q = q+Iq′

consisting of eight real components with the 8× 8 real matrix using the expressions 3.2 defined for
the base elements of the real quaternions.
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Theorem 3.2. For the elliptical biquaternion Q there is the relation:
H−(Q) ∼= (a0 + Ta′0)ξ0 + (a1 + Ta′1)ξ1 + (a2 + Ta′2)ξ2 + (a3 + Ta′3)ξ3
H−(Q) ∼=

a0 −a1 −a2 −a3
√
|p|a0′ −

√
|p|a1′ −

√
|p|a2′ −

√
|p|a3′

a1 a0 a3 −a2
√
|p|a1′

√
|p|a0′

√
|p|a3′ −

√
|p|a2′

a2 −a3 a0 a1
√
|p|a2′ −

√
|p|a3′

√
|p|a0′

√
|p|a1′

a3 a2 −a1 a0
√
|p|a3′

√
|p|a2′ −

√
|p|a1′

√
|p|a0′

−
√
|p|a0′

√
|p|a1′

√
|p|a2′

√
|p|a3′ a0 −a1 −a2 −a3

−
√
|p|a1′ −

√
|p|a0′ −

√
|p|a3′

√
|p|a2′ a1 a0 a3 −a2

−
√
|p|a2′

√
|p|a3′ −

√
|p|a0′ −

√
|p|a1′ a2 −a3 a0 a1

−
√
|p|a3′ −

√
|p|a2′

√
|p|a1′ −

√
|p|a0′ a3 a2 −a1 a0


∼=
[

H−(Q)
√
|p|H−(Q′)

−
√
|p|H−(Q′) H−(Q)

]
Proof. For the elliptic biquaternion Q the matrix representation is

H−(Q) ∼= (a0 + Ta′0)ξ0 + (a1 + Ta′0)ξ1 + (a2 + Ta′0)ξ2 + (a3 + Ta′0)ξ3 (3.14)

First, let us define the following matrix

T = µ× Γ0 =

[
0 Γ0

√
|p|

−Γ0

√
|p| 0

]

T =



0 0 0 0
√
|p| 0 0 0

0 0 0 0 0
√
|p| 0 0

0 0 0 0 0 0
√
|p| 0

0 0 0 0 0 0 0
√
|p|

−
√
|p| 0 0 0 0 0 0 0

0 −
√
|p| 0 0 0 0 0 0

0 0 −
√
|p| 0 0 0 0 0

0 0 0 −
√
|p| 0 0 0 0


(3.15)

where the quaternionic units provide the multiplication rules

ξ0
2 = −ξj2 = I8 = ξ0, ξ1ξ2 = −ξ3, ξ2ξ3 = −ξ1, ξ3ξ1 = −ξ2 ξ2ξ1 = ξ3 , ξ3ξ2 = ξ1 , ξ1ξ3 = ξ2. (3.16)

Also, let us define matrices of ξj , j = 0, 1, 2, 3 and elliptic matrix µ, 2× 2 as

ξj = σ0 × Γ
j

=

[
Γ
j

0
0 Γ

j

]
and

µ =

[
0

√
|p|

−
√
|p| 0

]
.
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Let us find the 8× 8 real matrix representation of the equation given in Theorem 3.2. Firstly,

a0ξ0 =

[
a0Γ0 0

0 a0Γ0

]
=



a0 0 0 0 0 0 0 0
0 a0 0 0 0 0 0 0
0 0 a0 0 0 0 0 0
0 0 0 a0 0 0 0 0
0 0 0 0 a0 0 0 0
0 0 0 0 0 a0 0 0
0 0 0 0 0 0 a0 0
0 0 0 0 0 0 0 a0


and

(Ta0
′)ξ0 =

[
0 Γ0

2
√
|p|a0′

−Γ0
2
√
|p|a0′ 0

]
.

So, we can clearly write that

(Ta0
′)ξ0 =



0 0 0 0 a0
′√|p| 0 0 0

0 0 0 0 0 a0
′√|p| 0 0

0 0 0 0 0 0 a0
′√|p| 0

0 0 0 0 0 0 0 a0
′√|p|

−a0′
√
|p| 0 0 0 0 0 0 0

0 −a0′
√
|p| 0 0 0 0 0 0

0 0 −a0′
√
|p| 0 0 0 0 0

0 0 0 −a0′
√
|p| 0 0 0 0


.

Thus, we obtain the matrix sum of the two equations as follows:

a0ξ0 + (Ta0
′)ξ0 =



q0 0 0 0
√
|p|a0′ 0 0 0

0 q0 0 0 0
√
|p|a0′ 0 0

0 0 q0 0 0 0
√
|p|a0′ 0

0 0 0 q0 0 0 0
√
|p|a0′

−
√
|p|a0′ 0 0 0 q0 0 0 0

0 −
√
|p|a0′ 0 0 0 q0 0 0

0 0 −
√
|p|a0′ 0 0 0 q0 0

0 0 0 −
√
|p|a0′ 0 0 0 q0


.

Similarly, their matrices of addition can be calculated according to other unit bases of the el-
liptic biquaternion. Hence, we obtain the matrix representation in 8 × 8 dimension of the elliptic
biquaternion Q as follows:

H−(Q) ∼=



a0 −a1 −a2 −a3
√
|p|a′0 −

√
|p|a′1 −

√
|p|a′2 −

√
|p|a′3

a1 a0 a3 −a2
√
|p|a′1

√
|p|a′0

√
|p|a′3 −

√
|p|a′2

a2 −a3 a0 a1
√
|p|a′2 −

√
|p|a′3

√
|p|a′0

√
|p|a′1

a3 a2 −a1 a0
√
|p|a′3

√
|p|a′2 −

√
|p|a′1

√
|p|a′0

−
√
|p|a′0

√
|p|a′1

√
|p|a′2

√
|p|a′3 a0 −a1 −a2 −a3

−
√
|p|a′1 −

√
|p|a′0 −

√
|p|a′3

√
|p|a′2 a1 a0 a3 −a2

−
√
|p|a′2

√
|p|a′3 −

√
|p|a′0 −

√
|p|a′1 a2 −a3 a0 a1

−
√
|p|a′3 −

√
|p|a′2

√
|p|a′1 −

√
|p|a′0 a3 a2 −a1 a0
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and thus, we get

H−(Q) ∼=
[

H−(Q)
√
|p|H−(Q′)

−
√
|p|H−(Q′) H−(Q)

]
.

q.e.d.

4 Lorentz transformations with elliptic biquaternions

Lorentz transformation in physics is named after Dutch physicist H. Lorentz. The transformations
explain how the speed of light independent of the frame of reference is to be observed the measure-
ments of space and time measured by the two observers being related. Lorentz transformations are
linear transformations in concordance with special relativity. Every elliptic biquaternion R that
combines the cartesian position vector ~r = r1î+ r2ĵ+ r3k̂ with the time t can be written as follows:

R = ct+ Ir = cte0 + I(r1e1 + r2e2 + r3e3) = R0e0 +R1e1 +R2e2 +R3e3 (4.1)

where c is the speed of light in four-dimensional space, r is the pure real quaternion. Considering
the left Hamiltonian matrix and Theorem 3.2 for the elliptic biquaternion R = ct+Ir the following
theorem can be given.

Theorem 4.1. Let us consider an elliptical biquaternion R = ct + Ir that combines vector of
position and time in four-dimensional space. The elliptic biquaternionic representation of H−(R)
is as follows

H−(R) ∼=
[

ctΓ0

√
|p|H−(R)

−
√
|p|H−(R) ctΓ0

]
where c indicate the speed of light.

Proof. Matrices corresponding to the base elements of the pure elliptic biquaternion R are written
as follows

Γ1 =

[
σ2 0
0 −σ2

]
, Γ2 =

[
0 −σ0
σ0 0

]
, Γ3 =

[
0 σ2
σ2 0

]
.

Considering these matrices the equality, we get

H−(R) = r1Γ1 + r2Γ2 + r3Γ3

H−(R) =


0 −r1 0 0
r1 0 0 0
0 0 0 r1
0 0 −r1 0

+


0 0 −r2 0
0 0 0 −r2
r2 0 0 0
0 r2 0 0

+


0 0 0 −r3
0 0 r3 0
0 −r3 0 0
r3 0 0 0


=


0 −r1 −r2 −r3
r1 0 r3 −r2
r2 −r3 0 r1
r3 r2 −r1 0

 .
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Also, from the equalities 3.15 and 3.16, we obtain the real matrix in dimension 8× 8 as follows

H−(R) = ctξ0 + (Tr1)ξ1 + (Tr2)ξ2 + (Tr3)ξ3 (4.2)

H−(R) ∼=



ct 0 0 0 0 −r1
√
|p| −r2

√
|p| −r3

√
|p|

0 ct 0 0 r1
√
|p| 0 r3

√
|p| −r2

√
|p|

0 0 ct 0 r2
√
|p| −r3

√
|p| 0 r1

√
|p|

0 0 0 ct r3
√
|p| r2

√
|p| −r1

√
|p| 0

0 r1
√
|p| r2

√
|p| r3

√
|p| ct 0 0 r3

√
|p|

−r1
√
|p| 0 −r3

√
|p| r2

√
|p| 0 ct −r3

√
|p| 0

−r2
√
|p| r3

√
|p| 0 −r1

√
|p| 0 r3

√
|p| ct 0

−r3
√
|p| −r2

√
|p| r1

√
|p| 0 −r3

√
|p| 0 0 ct


.

Hence, 2× 2 elliptical matrix representation of the resulting matrix is as follows:

H− (R) ∼=
[

ctΓ0

√
|p|H− (R)

−
√
|p|H− (R) ctΓ0

]
.

q.e.d.

As a result of the relativistic transformation relation of the elliptic biquaternion R = ct + Ir
Lorentz transformation equations can be obtained.
Firstly, let us the unit elliptic biquaternion Q which can be define as

Q = a0 + Ia′ = A0e0 +A1e1 +A2e2 +A3e3 = A0 + A. (4.3)

Considering Theorem 2.3 we state the unit elliptic biquaternion as follows:

Q = cosh(p
θp
2

) +
1

I
q̂ sinh(p

θp
2

) = cosh(p
θp
2

) +
1

I
I

~v√
< ~v,~v >

sinh(p
θp
2

). (4.4)

Here, we consider a speed ~v = v1e1 + v2e2 + v3e3 which is in the opposite direction. Thus, from 4.3
and 4.4 the following equation holds:

a0 = A0 = cosh(p
θp
2

) , a′ =
1

I

~v

ν
sinh(p

θp
2

) =
q̂

p
sinh(p

θp
2

), A =
~v

ν
sinh(p

θp
2

). (4.5)

On the other hand from the known Lorentz coordinate transformations, we get

cosh(pθp) =
|c|√
c2 − ν2

=
|c|

|c|
√

1− ν2

c2

=
1

1− |p| ν2
= β

sinh(pθp) =
|ν|√
c2 − ν2

=
|ν|

|c|
√

1− |p| v2
= ∓ ν

c
√

1− pν2
= ∓β

c
ν

(4.6)

where |p| = 1
c2 and

√
< ~v,~v > = ν. Also, from the 4.1 and we obtain

a0 = A0, A = Ia′, A1 = Ia′1, A2 = Ia′2,

A3 = Ia′3, a′0e0 + a′1e1 + a′2e2 + a′3e3 = a′, R0 = ct, R = Ir.
(4.7)
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The elliptic biquaternion obtained from 4.1 as a result of the relation of the relativistic transfor-
mation of elliptic biquaternion R = ct + Ir can be written as R′ = ct + Ir′. The relativistic
transformation relation of elliptic biquaternion R is expressed as follows

R′ = QRQ̄∗. (4.8)

This equality is rewritten using equations 3.15 and Theorem 4.1 as

H−(R′) = H−(Q)H−(R)H−(Q̄)∗

= (a0ξ0 + (Ta1)ξ1 + (Ta2)ξ2 + (Ta3)ξ3)(tξ0 + (Tr1)ξ1 + (Tr2)ξ2

+(Tr3)ξ3)(a0ξ0 + (Ta1)ξ1 + (Ta2)ξ2 + (Ta3)ξ3)

(4.9)

or in the other way

H−(R′) ∼=
[

a0Γ0 −
√
|p|H−(Q)

−
√
|p|H−(Q) a0Γ0

] [
ctΓ0

√
|p|H−(R)

−
√
|p|H−(R) ctΓ0

] [
a0Γ0

√
|p|H−(Q)

−
√
|p|H−(Q) a0Γ0

]
(4.10)

is represented. Also by equality 4.8 we write

R′ = (A0 + A)(A0R0 +R0A +A0R− 〈R,A〉+ (R ∧A)
= A0

2R0 +A0R0A +A0
2R−A0 < R,A > +A0 < R,A > +A0R0A

−R0 < A,A > −A0 < A,R >
= A0 〈A,R〉 −A 〈R,A〉 − 〈A,R ∧A〉+ A ∧ (R ∧A).

Since there is 〈A,R ∧A〉 = 0 we reach the following general equality for R′:

R′ = A0
2R0 + 2A0R0A+A0

2R−A0 < R,A > −R0 < A,A >

−A0 < A,R > −A < R,A > +A ∧ (R ∧A). (4.11)

From the properties of the vector product, we get

A ∧ (R ∧A) = R < A,A > −A < A,R >= A2R−A < A,R > .

If this equality is written in the equation 4.11, we obtain

R′ = A0
2R0 + 2A0R0A +A0

2R− 2A0 < A,R > −R0A
2 − 2A < A,R > +A2R.

By substituting 4.7 in this equation, we reach the following equation

R′ = A0
2ct− ct(Ia′)2 − 2A0I

2 < r,a′ > +A0
2(Ir) + 2A0ct(Ia

′)
− 2I3a′ < a′, r > +(Ia′)2(Ir)

= (A0
2 − p(a′)2)ct− 2A0p < r,a′ > +Ir(A0

2 + p(a′)2) + 2IctA0a
′

− 2Ipa′ < a′, r >.

In this expression, the terms containing and not containing I (I2 = p < 0 ) must be matched so
that both sides of equality can be equal to each other. Thus, for relativistic transformation relation
of space and time as the equation R′ = ct′ + Ir′ can be written we obtain the following equations
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ct′ = (A0
2 − p(a′)2)ct− 2A0p < r,a′ >

t′ = (A0
2 − p(a′)2)t− 2A0

p

c
< r,a′ > (4.12)

and

Ir′ = Ir(A0
2 + p(a′)2) + 2IctA0a

′ − 2Ipa′ < a′, r >

r′ = r(A0
2 + p(a′)2) + 2ctA0a

′ − 2pa′ < a′, r > . (4.13)

For the elliptic biquaternion Q the definitions given in the equations 4.3-4.4 using in the equation
4.12 we obtain

t′ = (cosh2(p
θp
2

) + sinh2(p
θp
2

)t− 2 cosh(p
θp
2

)
p

c

1

p
< r, q̂ > sinh(p

θp
2

). (4.14)

Furthermore, using the equations of 4.6 and the known hyperbolic trigonometric function we obtain
the expression 4.14 as follows:

t′ = t cosh(pθp)− I
c sinh(pθp)

<r,~v>√
<~v,~v>

.

Here

q̂ = I
~v√

< ~v,~v >
(4.15)

therefore we obtain

t′ = tβ − I β
c

|ν|
c

< r, ~v >√
< ~v,~v >

= β(t− I

c2
< r, ~v >). (4.16)

Similarly, for the equality r′ given in 4.13 we get

r′ = r(cosh2(p
θp
2

) + p < q̂, q̂ > sinh2(p
θp
2

) + 2ct cosh(p
θp
2

)
q̂

p
sinh(p

θp
2

)

−2p
q̂

p
sinh(p

θp
2

) <
q̂

p
sinh(p

θp
2

), r > .

(4.17)

Writing the equation 4.17 in the last equation we find

r′ = r + ct
I

p

~v√
< ~v,~v >

2 cosh(p
θp
2

) sinh(p
θp
2

)− 2
1

p
sinh2(p

θp
2

)I2
< ~v, r >√

< ~v,~v >
√
< ~v,~v >

−2sinh2(p
θp
2 ) I

2

p
1√

<v,v>
√
<v,v>

~v < ~v, r >

with the help of trigonometric identities we obtain

r′ = r + 1
I

1√
1−pν2

~vt− 1√
1−pν2

~v<~v,r>
ν2 + ~v<~v,r>

ν2 .

Thus
r′ = x+ 1

I
1√

1−|p|v2
~vt± x√

1−|p|v2
∓ x = 1

I
1√

1−|p|v2
~vt+ x√

1−|p|v2
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is obtained. Consequently, the equation is obtained as follows:

r′ =
I

I2
~vt√

1− |p| v2
+

x√
1− |p| v2

=
1√

1− |p| v2
(x− I

|p|
~vt) = β(x− I

|p|
~vt). (4.18)

Here is r = +x , v = −x , < v, v >= ∓ν2. These obtained equations for t′ and r′ are in conformity
with the usual Lorentz transformation equations. It is also possible to give the matrix equality 4.9
which defines relativistic transformation carrying out with 4-dimensional matrix representations.
For this purpose, if the elliptic biquaternion matrix definition in equality 3.4 is used, the equality
in the form R′ = QRQ̄∗ can be written. We give the matrix representation of this transformation
using the matrix multiplication relations 3.5 and 3.9 since the matrices do not provide the commu-
tative property. We get a unit elliptic biquaternion as Q = a0 + Ia′ (a1 = a2 = a3 = a′0 = 0) and
I2 = p < 0 then

H−(R′) = H−(Q) RH−(Q̄∗) = H−(Q)H+(Q̄∗) R (4.19)[
R′0
R′

]
=

[
A0 −A

AT A0I3 + Ã

] [
R0 0
0 R0I3

] [
A0

A

]
is obtained. This equation can be written more clearly in type 4× 4 as follows:

R′0
R′1
R′2
R′3

 =


A0 −A1 −A2 −A3

A1 A0 A3 −A2

A2 −A3 A0 A1

A3 A2 −A1 A0



A0 −A1 −A2 −A3

A1 A0 −A3 A2

A2 A3 A0 −A1

A3 −A2 A1 A0



R0

R1

R2

R3

 (4.20)

the equation

U =


A0

2 −A1
2 −A2

2 −A3
2 −2A0A1 −2A0A2 −2A0A3

2A0A1 A0
2 −A1

2 +A2
2 +A3

2 −2A1A2 −2A1A3

2A0A2 −2A1A2 A0
2 +A1

2 −A2
2 +A3

2 −2A2A3

2A0A3 −2A1A3 −2A2A3 A0
2 +A1

2 +A2
2 −A3

2


is concluded. Since the elliptic biquaternion Q is the unit elliptic biquaternion the above matrix
relation can be written in a simpler form as

R′0
R′1
R′2
R′3

 =


2A0

2 − 1 −2A0A1 −2A0A2 −2A0A3

2A0A1 1− 2A1
2 −2A1A2 −2A1A3

2A0A2 −2A1A2 1− 2A2
2 −2A2A3

2A0A3 −2A1A3 −2A2A3 1− 2A3
2



R0

R1

R2

R3



R′0
Ir′1
Ir′2
Ir′3

 =


2A0

2 − 1 −2A0A1 −2A0A2 −2A0A3

2A0A1 1− 2A1
2 −2A1A2 −2A1A3

2A0A2 −2A1A2 1− 2A2
2 −2A2A3

2A0A3 −2A1A3 −2A2A3 1− 2A3
2



R0

Ir1
Ir2
Ir3

 .
In this equation we get
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U =


2A0

2 − 1 −2A0A1 −2A0A2 −2A0A3

2A0A1 1− 2A1
2 −2A1A2 −2A1A3

2A0A2 −2A1A2 1− 2A2
2 −2A2A3

2A0A3 −2A1A3 −2A2A3 1− 2A3
2

 .
If the matrix equality is defined as above then using definitions 4.6 is obtained as

U =


β ±βc v1 ±βc v2 ±βc v3
∓βc v1 1− (β − 1) v1

2

∓ν2 −(β − 1)v1v2∓ν2 −(β − 1)v1v3∓ν2

∓βc v2 −(β − 1)v1v2±ν2 1− (β − 1) v2
2

∓ν2 −(β − 1)v2v3∓ν2

∓βc v3 −(β − 1)v1v3±ν2 −(β − 1)v2v3∓ν2 1− (β − 1) v3
2

∓ν2

 .
Thus, it is possible to represent equality 4.19 as

H−(R′) = U R.

In addition, it is possible to indicate the equation defined in 4.19 with eight-dimensional real
matrices.

We can write as H−(R′) = H−(Q) R H−(Q̄∗) = H−(Q)H−(
^

Q̄

∗

) R. This equation can be writ-
ten as

H−(R′) =


a0 0 a′0 −a′
0 a0I3 a′T a′0I3 − ã′
−a′0 a′ a0 0

−a′T −a′0I3 − ã′ 0 a0I3




a0 0 a′0 −a′
0 a0I3 a′

T
a′0

T
I3 − ã′

−a′0 a′ a0 0

−a′T −a′0I3 + ã′ 0 a0I3



R0

0
0
R

 .
Also, it can be obtained more clearly as

ct′

0
0
0
0
r′1
r′2
r′3


=



a0 0 0 0 a′0 −a′1 −a′2 −a′3
0 a0 0 0 a′1 a′0 a′3 −a′2
0 0 a0 0 a′2 −a′3 a′0 a′1
0 0 0 a0 a′3 a′2 −a′1 a′0
−a′0 a′1 a′2 a′3 a0 0 0 0
−a′1 a′0 −a′3 a′2 0 a0 0 0
−a′2 a′3 a′0 −a′1 0 0 a0 0
−a′3 −a′2 a′1 −a′0 0 0 0 a0





a0 0 0 0 a′0 −a′1 −a′2 −a′3
0 a0 0 0 a′1 a′0 −a′3 a′2
0 0 a0 0 a′2 a′33 a′0 −a′1
0 0 0 a0 a′3 −a′2 a′1 a′0
−a′0 a′1 a′2 a′3 a0 0 0 0
−a′1 −a′0 a′3 −a′2 0 a0 0 0
−a′2 −a′3 −a′0 a′1 0 0 a0 0
−a′3 a′2 −a′1 −a′0 0 0 0 a0





ct
0
0
0
0
r1
r2
r3


.

From here two matrix multiplications

H− (Q)H−
(
^
Q

)
∼=



a0
2 + a′1

2 + a′2
2 + a′3

2 0 0 0 0 −2a0a′1 −2a0a′2 −2a0a′3
0 a0

2 + a′1
2 − a′22 − a′32 2a′1a

′
2 2a′1a

′
3 2a0a

′
1 0 0 0

0 2a′1a
′
2 a0

2 − a′12 + a′2
2 − a′32 2a′2a

′
3 2a0a

′
2 0 0 0

0 2a′1a
′
3 2a′2a

′
3 a0

2 − a′12 − a′22 + a′3
2 2a0a

′
3 0 0 0

0 2a0a
′
1 2a0a

′
2 2a0a

′
3 a0

2 + a′1
2 + a′2

2 + a′3
2 0 0 0

−2a′1a0 0 0 0 0 a0
2 + a′1

2 − a′22 − a′32 2a′1a
′
2 2a′1a

′
3

−2a′2a0 0 0 0 0 2a′1a
′
2 a0

2 − a′12 + a′2
2 − a′32 2a′2a

′
3

−2a′3a0 0 0 0 0 2a′1a
′
3 2a′2a

′
3 a0

2 − a′12 − a′22 + a′3
2



is obtained. We can give this equation more clearly as follows:

H− (Q)H−
(
^
Q

)
∼=
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(p−1)a0
2+1

p 0 0 0 0 −2a0a′1 −2a0a′2 −2a0a′3
0

a0
2(p+1)+2pa′21−1

p 2a′1a
′
2 2a′1a

′
3 2a0a

′
1 0 0 0

0 2a′1a
′
2

a0
2(p+1)+2pa′2

2−1
p 2a′2a

′
3 2a0a

′
2 0 0 0

0 2a′1a
′
3 2a′2a

′
3

a0
2(p+1)+2pa′3

2−1
p 2a0a

′
3 0 0 0

0 2a0a
′
1 2a0a

′
2 2a′3a0

(p−1)a0
2+1

p 0 0 0

−2a0a′1 0 0 0 0
a0

2(p+1)+2pa′21−1
p 2a′1a

′
2 2a′1a

′
3

−2a0a′2 0 0 0 0 2a′1a
′
2

a0
2(p+1)+2pa′2

2−1
p 2a′2a

′
3

−2a0a′3 0 0 0 0 2a′1a
′
3 2a′2a

′
3

a0
2(p+1)+2pa′3

2−1
p



. (4.21)

For the real components of the elliptic biquaternion as can be seen from 4.6;

a0 = cosh(
Iθp
2

) , a1
′ =

1

I

~v1
ν

sinh(
Iθp
2

) , a2
′ =

1

I

~v2
ν

sinh(
Iθp
2

) , a′3 =
1

I

~v3
ν

sinh(
Iθp
2

)

and the transformation matrix U that provides definitions given in 4.6 is

U ∼=



(β+1)(p−1)+2
2p 0 0 0 0 ± 1

I
β
c v1 ± 1

I
β
c v2 ± 1

I
β
c v3

0
(β+1)(p+1)+2(β−1) v1

2

∓ν2
−2

2p
(β−1)v1v2
∓pν2

−(β−1)v1v3
∓pν2 ∓ 1

I
β
c v1 0 0 0

0 (β−1)v1v2
∓pv2

(β+1)(p+1)+2(β−1) v2
2

∓ν2
−2

2p
(β−1)v2v3
∓pν2 ∓ 1

I
β
c v2 0 0 0

0 (β−1)v1v3
∓pv2

(β−1)+v2v3
∓pv2

(β+1)(p+1)+2(β−1) v3
2

∓ν2
−2

2p ∓ 1
I
β
c v3 0 0 0

0 ∓ 1
I
β
c v1 ∓ 1

I
β
c v2 ∓ 1

I
β
c v3

(p−1)(β+1)+2
2p 0 0 0

± 1
I
β
c v1 0 0 0 0

(β+1)(p+1)+2(β−1) v1
2

∓ν2
−2

2p
(β−1)v1v2
∓pv2

(β−1)v1v3
∓pv2

± 1
I
β
c v2 0 0 0 0 (β−1)v1v2

∓pν2

(β+1)(p+1)+2(β−1) v2
2

ν2
−2

2p
(β−1)v2v3
∓pv2

± 1
I
β
c v3 0 0 0 0 (β−1)v1v3

∓pv2
(β−1)v2v3
∓pν2

(β+1)(p+1)+2(β−1) v3
2

∓ν2
−2

2p



and

H−(R′) ∼=



(
(β+1)(p−1)−2

2p

)
ct± 1

I
βv1r1 ± 1

I
βv2r2 ± 1

I
βv3r3

0
0
0
0

± 1
I
βctv1 +

 (β+1)(p+1)+2(β−1)
v1

2

∓ν2
−2

2p

 r1 +
(

(β−1)v1v2
∓pv2

)
r2 +

(
(β−1)v1v3
∓pv2

)
r3

± 1
I
βctv1 +

(
(β−1)v1v2
∓pv2

)
r1 +

 (β+1)(p+1)+2(β−1)
v2

2

∓ν2
−2

2p

 r2 +
(

(β−1)v2v3
∓pv2

)
r3

± 1
I
βctv3 +

(
(β−1)v1v3
∓pv2

)
r1 +

(
(β−1)v2v3
∓pv2

)
r2 +

 (β+1)(p+1)+2(β−1)
v3

2

∓ν2
−2

2p

 r3


is obtained.
Hence, the algebraic equation of Lorentz transformations is obtained from the desired matrix rep-
resentation. Also in the transformation matrix in above for p = I2 = −1, c = 1 we obtain following
as

U =



βt 0 0 0 0 ∓iβv1 ∓iβv2 ∓iβ3v3
0 −(β−1)v12

∓ν2 + 1 −(β−1)v1v2
∓ν2

−(β−1)v1v3
∓ν2 ∓iβv1 0 0 0

0 −(β−1)v1v2
∓ν2

−(β−1)v22

∓ν2 + 1 −(β−1)v22

∓ν2 ∓iβv2 0 0 0

0 −(β−1)v1v3
∓ν2

−(β−1)v2v3
∓ν2

−(β−1)v32

∓ν2 + 1 ∓iβv3 0 0 0

0 ±iβv1 ±iβv2 ±iβv3 β 0 0 0

∓iβv1 0 0 0 0 −(β−1)v12

∓ν2 + 1 −(β−1)v1v2
∓ν2

−(β−1)v1v3
∓ν2

∓iβv2 0 0 0 0 −(β−1)v1v2
∓ν2

−(β−1)v22

∓ν2 + 1 −(β−1)v2v3
ν2

∓iβv3 0 0 0 0 −(β−1)v1v3
∓ν2

−(β−1)v2v3
∓ν2

−(β−1)v32

∓ν2 + 1


.
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Also, it is obtained by taking < ~v,~v >= −ν2 by and a velocity ~v = v1e1 +v2e2 +v3e3 in the reverse
direction generally as follows:

U =



β 0 0 0 0 −iβv1 −iβv2 −iβ3v3

0
(β−1)v1

2

ν2
+ 1

(β−1)v1v2
ν2

(β−1)v1v3
ν2

iβv1 0 0 0

0
(β−1)v1v2

ν2
(β−1)v2

2

ν2
+ 1

(β−1)v2
2

ν2
iβv2 0 0 0

0
(β−1)v1v3

ν2
(β−1)v2v3

ν2
(β−1)v3

2

ν2
+ 1 iβv3 0 0 0

0 iβv1 iβv2 iβv3 β 0 0 0

−iβv1 0 0 0 0
(β−1)v1

2

ν2
+ 1

(β−1)v1v2
ν2

(β−1)v1v3
ν2

−iβv2 0 0 0 0
(β−1)v1v2

ν2
−(β−1)v2

2

∓ν2
+ 1

(β−1)v2v3
ν2

−iβv3 0 0 0 0
(β−1)v1v3

ν2
(β−1)v2v3

ν2
(β−1)v3

2

ν2
+ 1



[20].

5 Conclusions

In this study, the well-known Lorentz transformations in the physics were studied with elliptic bi-
quaternions. Transformation matrices of 4×4 type consisting of elliptic components and 8×8 type
consisting of real components were defined with the equality of the elliptic biquaternion R = ct+Ir
combining space and time. The matrix equality 4.8 defining the relativistic transformation of 4−
dimensional matrix expressions was given in 4.20. We also gave an easier and rather useful the
expression of transformation U through the elliptic biquaternionic transformation matrix that we
defined. Thanks to by expressing its matrix containing elliptic components in 8 × 8 type, we ex-
ecuted that mathematical expressions are obtained with fewer operations by making it possible
to express the transformation of the relativistic transformation relation in the 8 × 8 type matrix
representation in a simpler way. The recommended method may be preferred according to the
type of operation, depending on the reader preference in order to be clear and simple. The form
of expression in 4.1 and the physical results obtained with the help of 4.16 and 4.18 are provided
easily interrelated. It is possible to express basic equations of electromagnetism with many physical
quantities of different properties such as electric and magnetic fields, energy and momentum quan-
tities, electrical current and charge density, scalar and vector potential which are closely related to
each other through the equations and matrices obtained through this study, by means of elliptic
biquaternion. Therefore, the expressions obtained are important in terms of being versatile and
obtaining relativistic equations which very important in physics.
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